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* SQUARE—ROOT ALGORITHMS FOR THE CONTINUOUS-TIME LINEAR LEAST SQUARES ESTIMATION PROBLEH~

N. Morf, B. L~vy and T. ICailath
Information System~ Laboratory -

Stanford University
Stanford, CA 94305

Abstract g(t) — P(t)~ (t) + P(t)H
T(t)(y(t) — H(t)~(t))

A simple differential. equation for the triangular ~(O) — 0 (2a)
square—root of the error covariance of the linear where P(t) , the covariance of the error of tbs
state estimator is derived. Previous algorithms state estimate, obeys the Riccati equation
involved an antisyinetric matrix in the square— 

~(t) — F(t)P(t) + p(t)TT(t) + G(t)GT(t) —root differential equation. In the constan t
model case , Chandraselchar ’-type equations are — P(t)HT(t)H(t)P(t)

• shown to constitute a set of f a s t  square—root P(O) — (2b)algorithms for the derivative of the error van —
ance. Over the years , the Riccati equation has beenSquare—root algorithms for the smoothing studied in great detail , and as one way to improve• problem are presented and as in the discrete case, its ntj uenical conditioning , a whole family ofan array method for handling continuous squar e— alternative square—roo t algorithms has beenroots is developed . This method also yields introduced . In the discrete—case , square—rootvery naturally the usual normalizations of algorithms have been studied by Potter (2 ],stochastic calculus, suggesting extensions to Colub (3) , Schmidt (4 1,  ICaminaki and Bryson (5 1,more general stochastic equations, even to esti— [6), .Bierman [7), [8), Norf and Kailath [9),• ma tors for nonlinear models. among others.

Continuous—time square—root algorithms hive
attracted somewhat less interest (see Andrew.I. Introduction - 
(10], ~~~ and Choe [11], Bierman (121 , and
Morf and Kailath (9], Appendix C). SomewhatSince a full version of this paper will appear

in (1], we present here only an outline of our surprisingly, all known solutions explicItly
introduce a certain antisymoetnic matrix into theresults.
differential equation for the square—roots. EnWe assume tha t we are given a state—space o Section II of this paper, we present a differen—model tial equation for the triangular square—roots

~(t) — F(t) x (t) + C(t)u(t) that does not explicitly contain any such anti—

y (t) — lI(t)x (t) + v (t) (la) syametnic matrix. We show that these matrices
are generators of the .orthogonal transformations

where u(~) and v (s)  are white noises with that relate the various squar e—roots and that a
normalized j oint covariance: particular choice of this matrix will result in

r.u(t)J 
(u T 

1 r1 0 triangular square—roots. Among other result., we
E~I Cs) vT(s) ]~ — f q 1 6(t s) (ib) shall also discuss the stability of our new

equations , and we shall also present socte alt.rn.—I ) 1~O I~J 

—

tlve f orms (such as the information filter forms
for the case of high initial uncertainty of the

Here , T denotes the transpose and E the expec— state estimate). In passing we also note that
tation. these ideas can also be applied to the Chan—

Then, ~c(t), the linear least squares estimate drasekhar—eyp e algorithms (for constant models).
of x(t) given the observed data
yt 

~ f y(s) , 0 < $ < t} can be obtained via the II. Continuous—time square—roo t algorithms

Kalnan filter equation 
. . If S is a square—root of P and P ( )  is

strictly positive definite , so that we can write
p — 55T where S is nonsingular , then the
Riccati equation (2b) can be rewritten as1This work was supported by the Air Force p _ s s T +s~~

T_ (F_½ . SSTHTH)S ST +Office of Scientific Research, Air Force Systems
Coim~and , under Contract AF44—620-74-C-0068, and + ~ c 0T 5 T8T + s ST (PT lIHTH s +
in part by the National Science Foundation under 

+ ½ ~ ~—l ~ c” (3)‘Contract NSF—Eng—75—18952 and the Joint Services
Electronics Program under Contract N00014-75—C This equation is satisfied if the square—roo t
0601. S obeys the differential equation
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(?—½ .SS T HT H )S+½ GGT S T (4a) A + F _ S S T (10)

with initial conditions was giving a lowe r— t imes upper—triangular
factorization of A + r , and thereby were able to

5(0) — S S sT 
— U0 . (4b) simoltaneously compute s (in lover triangular0 0 0

form) and A
However , it is well—known that matrix square-

roots are not unique, for if S is a square—root, Actually, it is possible to find a differential

so is ST , where T is any orthonormal matrix, equation for S in lower triangular form that
does not explicitly involve any antisyametric

To study how this non—uniqueness is reflected matrix in the equation: multiPl; (3) on the left
into the differential equation , we note first by S’~ and on the right by S to obta in
that any differentiable orthonormal matrix T(t)
can be uniquely characterized by a skew-or—anti— ~~~ + s~s~~ — M
symsecric matrix generator a(•) such that A — —T + ~~T — ~T1jwhere M F + F

• 
~~(.)  +~~~~(.) - 0 (5a) 6 1 1and P S F S  ,~~~ “ S G  ,H H S

and Since S is lower triangular , 1. the
i~(t) — A(t)T(t) , T(O) — T T TT 

— I~ . lover triangular part of H and we can identify
0 0 0 (an idea analogous to the Wiener—Hopf technique)

(5b) — s[NI~,2 . (11)

Therefore, if S is the square—root obeying
equation (4) and if Here , ~ ~+I2 is the ’~ower—triangu1ar part”

operator defined by
a (6a) 

o for L < 3
by differentiation of (6a) , we obtain the dif-
ferential equation satisfied by s ~~+izij — •for i 3

a for 1 < 3
I — — i~s STHTH)S ,+ csa ’s~ + ~~~T)5

_T U
13

a a a ~° • for an arbitrary matrix U . The~strictly lower-
S (0) — S r . 

• (6b) triangular pare’ has zero values for I — 3a o o Similar ly, ~ , the “upper—triangular part ”
In this equation, the matrix

ACt) A s(t)a(t)sT(t) is antisyuuetr ic and can operator i. defined by
T T

• be tia~e arbitrary since a(t) is arb itrary. (U] ,,2 — [U
• Therefore, this establishes tha t all the square—

roots of P are given by the solutions of the The main advantage of equation (11) over those
differential equation • of Andrew. and Tapley and Choe is that it does

5 (~ — i~$S
THTH)S + (A + ½GGT S_T - 

not involve explicitly any antisymsetric matrix
In the differential equation. Moreover , the

S(O) — S0 , S~S~ — ff~ (7) matrices (~ , ~~, ~) have a nice interpretation:
these matrices arise in the dynamic model for the

4 where A(’) is an arbitrary antisy~~etric modified state—variable n — S 1x . The signif i—
matrix. cance of this choice ‘of variables is that the

Clearly, the square—root matrix S solution variance of the error f i  will be I • The
of (7) depends of the antisynnetr ic matrix dynamic model for n can be obtained from (1)
AC-) chosen. This dependence gives us an addi— and (11) as
tional degree of freedom , which can be exploited — — ~~~~~~~ + u , y — H n + v (12)
in different ways. For exaaole, a difficulty
with formula (7) ii tha t S~~ has to be computed Stability of the equation
at each integration step. However , Andrews [101
noted tha t A C . )  could be chosen so as to make Square-root methods have several advantage s

I’ S lover triangular, so that ~ 4 can be con— over t~ e Riccati equation (2b) : for example ,
put.d more easily. To do this , rewrite (7) as P — SS ~ always non—negative definits, a

(A + r)S~
T (8) property which is not always guar anteed by direc t

numerical integrat ion of (26) . Fu rthermore, since
with F v ss~ + kI(CGT 

— ssTHT IssT). the “condition number” of S is the square—root
Then , S can be maintained In lower tr iangular of the one for P P can be computed with

fox, by calculating A such that greater accurac y. On the other hand , these
algorithms require a slightly large r amount of

[(A + r)S~T )_ 0 conputations , as is shown in Appendix B of (1]
where eomputat ~onal aspects are discussed.

and by inserting this value of A in (8) . (Here it should also be pointed out that the ate—
(N] denotes the strictly upper triangular part . bility properties of the Riccati equation are
of he matr ix N ) . conserved by equation (11): as in (14], assume

A somewha t more direct approach was discovered that the pair (F,C) (respectively (N,!)) is
by Tap ley and Choe (11) who noted that (8) , when • unifo rm ly complete ly controllable (respec tively,
rewritten as • - •

—--~~~ — 
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observable) and that S1 and S2 are two solu— can be obtained by propagating the square—root of
ties. of the square—root equation (11) correspond— t(t) instead of the square—root of P(t) . How—

- ing to differen t ini tial condi tions $j~ 
and ever our earlier discussion suggests that we

iuch that S10S~0 
— 
~lO > 0 •~~ should consider a family of square roots, differ—

• 
~ — 1120 > 0 , ing from each other by orthogonal transformations.

In this case, P1 — S1Sj and P2 s2$ are • To see how this can be incorporated let us
positive—definite solutions of the Ricca ti review the der iva tion of the Chandrasekhar equa—
equation (2b) and if AP — P1 — P2 , it was tions. The first step is to exploit the constancy
proved by Kalman in (143 that AP(c) + 0 as of the model parameters by differentiating the

• t -‘ • Riccati equation (2b) to obtain
Now, demote AS — S1 — S2 , then P — (F — K(t)H)P + i’(F — K(t)19~ (19)

AP - AS . S~ + S~ . AS
T and by multiplication on

• the left by Sj1 and on the right by S~T , we and therefore ftt) — $k(t ,O)P(O)$~(t ,0)
obtain where 4.~,~(t ,O) is the transition matrix asaoei—

T (13) ated to (P — I((t)H) , K(t) — P(t)ffT being the- 
- silAs 

- 
+ 85T5’T - 1 2 • 

I~alman gain.
But S

~ 
and S2 are both lower triangular, Now, consider for simplicity the special case

and therefore S1l~
$ is the lower triangular part where ~~ — 0 (known initial conditions). In

of S11Ap~T: this case ~(O)— COT , so that we can factor
P(t) • L(t)LT(t) in square—root form, L(t)

• AS — S1[S ’AP c
T)+12 (14) being nxu with a — rank GGT < q: the number

of inputs.
and since AP(t) • 0 as t + ~ and Sj and Then substituting P — LLT in (19) , we find

are bounded for I — 1,2 (
~i 

and FIl are that L(t) obeys the Chandrasekhar—type equations
proved to be bounded in [14] we can conëlude [133
tha t AS(c) -

~~ 0 as t +
This indicates that the square—root equation i(t) — (F — K(t)R)L(t) — L(t)a(t)

(U) and the Riccati equation (2b) have the same - 

— L(t)LT(t)RT (20)
stability properties.

where L(O)LT(O) — ~~T,g(0) — 1100T , aCt) being
Information filter forms some a~~ antisymuetric matrix.

In [123, aCt) 0 was chosen , however the
In several instances, for example when 11 introduction of a(t) in (20) can provide some

(the uncertainty on the initial condition x’
~0)) additional control over the numerical behavior

becomes large, it is more convenient to compute of the square—root L(t)
• - P’1(t) instead of P(t) . Filters involving

p—l or its square—root 0(P 1 — Q QT) have III. Conclusions * -

been called information filters.
In this case , P obeys the differential In [13, we show that the results of Section II

- • equation can be extended to the fixed—point smoothing

- ~_~T ¼ ~~T COT)R + ~ + ½k
T
10R T (15) problem. Also, continuous-time array methods

similar to those developed in (9] by Morf and

4 where p(0)flT(O) — U~~ and a is an arbitrary Kailath for the discrete—time case are presented.
antisymmetric matrix. This approach yields very naturally the usual

Then, instead of computing ~ , it is more normalizatiozs of stochastic calculus , suggesting
convenient to compute 3 — P 1 

~ with the extensions to more general stochastic equations.
information filter In Appendix A of (1], we discuss an alternative

set of variance normalized Chandras ekhar—typ e
2 — —(F + CGT

~~
T)T a + 11Ty • (16) equations that involve only one differential

Alternatively, we can also propagate ~ — 
equation for the square—root of the error

via the variance normalized information filter covariance; however, the variance normalized state
model parameters have to be obtained. In

— — ½ 
~~ ~T 

— ½ jjT~)~ + jjTy (17) Appendix B, we present operation counts for the
• where ~ ~ 

p—1~p—T ~ — , ~ ~~ —T algorithm of Section II and those of Andrews and

We have seen in (12) that such a filter arises 
Tapley and Choe. The square—roo t algorithms
involve roughly 15 to 30% more computations than

naturally in the interpretation of equation (11) the liccati equation. Our new equation has the
for the triangular square—root S . The informa-
tion filter form of equation ~~1) ~~ 

advantage of giving an explicit differential
equation fox the square—root, which is consequently

— ..(M3+,2 0
T (18) easier to implement for analog simulation.
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